
Journal of Statistical Physics, Vol. 127, No. 4, May 2007 ( C© 2007 )
DOI: 10.1007/s10955-007-9305-1

When a Random Walk of Fixed Length can Lead
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A variation of the Pearson-Rayleigh random walk in which the steps are i.i.d. random
vectors of exponential length and uniform orientation is considered. Conditioned on
the total path length, the probability density function of the position of the walker after
n steps is determined analytically in one and two dimensions. It is shown that in two
dimensions n = 3 marks a critical transition point in the behavior of the random walk.
By taking less than three steps and walking a total length l, one is more likely to end
the walk near the boundary of the disc of radius l, while by taking more than three
steps one is more likely to end near the origin. Somehow surprisingly, by taking exactly
three steps one can end uniformly anywhere inside the disc of radius l. This means that
conditioned on l, the sum of three vectors of exponential length and uniform direction
has a uniform probability density.

While the presented analytic approach provides a complete solution for all n, it
becomes intractable in higher dimensions. In this case, it is shown that a necessary
condition to have a uniform density in dimension d is that 2(d + 2)/d is an integer,
equal to n + 1.

KEY WORDS: random walks, Pearson-Rayleigh walk, brownian motion, applied
probability

1. INTRODUCTION

“A man starts from a point O and walks a yards in a straight line; he then turns
through any angle whatever and walks another a yards in a second straight line. He
repeats this process n times. I require the probability that after n of these stretches
he is at distance between r and r + δr from his starting point O .” Karl Pearson,
1905.
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Above description defines the Pearson-Rayleigh random walk on the contin-
uum plane. In this paper we consider the variant in which the step lengths are i.i.d.
exponential random variables. Imagine a particle moving in a random environment
and undergoing elastic collisions at uniformly distributed point obstacles. Accord-
ingly, the steps of the particle are i.i.d. random vectors of exponential length and
uniform orientation. We determine the probability density function of the distance
from the starting point after n steps, conditioned on the total travelled length l.
A formal solution is easily constructed using characteristic functions, and evalu-
ation in closed form is made by analytic manipulations and by exploiting known
properties of Bessel functions.

In the two-dimensional case, we show that after three steps the walk can end
uniformly anywhere inside a ball of radius l. For n < 3 the walk ends at a point
that is likely to be near the boundary of the ball of radius l, while for n → ∞ it
tends to localize at the origin. This confirms the intuition that in one step the walk
consists of a single straight line of lenght l, but as the number of steps increases
and the total path length is kept fixed to l, single steps become on average smaller,
and the walk entangles around the origin. Surprisingly, the case n = 3 marks a
critical transition point when the density function is uniformly spread and does
accumulate neither at the origin, nor at the boundary of the area spanned by the
walk. A similar transition point is observed in one dimension after two, rather than
three steps. In this case, the conditional distribution has half the mass distributed
uniformly in the ball of radius l, and a delta mass of 1/4 at each end point of the
interval. On the other hand, the transition point is absent in three and all dimensions
for which 2(d + 2)/d is not an integer and equal to n + 1.

It is easy to show the one-dimensional case. Condition on the sum of the
Euclidean lengths of the steps to be a constant l > 0. Starting from the origin
choose a positive direction with probability 1/2, and note that the first exponential
step ends at coordinate X1, uniformly chosen in the interval [0, l]. The second
step either follows the same direction and ends at distance l from the origin (with
probability 1/4), or it follows the opposite direction and ends at random coordinate
X2 = X1 − (l − X1) = 2X1 − l. Since X1 is uniform in [0, l], it immediately
follows that the density of X2 is also uniform in the interval [−l, l] and has two
Dirac’s delta functions 1

4δ(x + l), 1
4δ(x − l) placed at the end points of the interval.

Clearly, the presence of the delta functions is due to the possibility of the two steps
being taken in the same direction, which does not occur in higher dimensions.
The simple argument given, however, does not generalize to dimensions two and
above.

The next section illustrates the complete one dimensional solution. Section 3
illustrates the two dimensional case. Section 4 shows that the uniform density
does not arise in all dimensions for which 2(d + 2)/d is not an integer and equal
to n + 1. Finally, we want to point out the book by Hughes,(1) which provides a
detailed background on the topic of random walks.
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2. ONE DIMENSION

Starting from the origin, the walker chooses a random direction and takes a
first step of exponential length. Accordingly, let the probability density function
(pdf) of reaching random coordinate X ∈ R in the first step on the line be given
by

fX (x) = η

2
e−η|x |. (1)

Note that since the direction is isotropic, above density depends only on the
absolute value |x | and that it integrates to one over the real line. Consider now
the joint pdf of reaching coordinate X on the line in a step of Euclidean length
L ∈ R

+. It is easy to write this using Dirac’s δ(·) function,

fX,L (x, l) = η

2
e−η|x |δ(l − |x |). (2)

We now iterate. The position after n steps and the total path length travelled are
given by the sum of n i.i.d. random vectors. Hence, their joint pdf can be computed
by performing m = n − 1 convolution operations of the single steps,

f∑n
i=1(Xi ,Li )(x, l) =

m
︷ ︸︸ ︷
fX,L ∗ fX,L ∗ . . . ∗ fX,L (x, l) ≡ fm X,L (x, l). (3)

Letting �X,L (ω, χ ) be the Fourier transform (i.e. characteristic function) of
fX,L (x, l), we can write the equivalent of (3) in the spectral domain as

�m X,L (ω, χ ) = (�X,L (ω, χ ))m+1, (4)

where

�X,L (ω, χ ) =
∫ ∞

−∞
dx

∫ ∞

0
dle−iωx e−iχl fX,L (x, l)

= η

2

∫ ∞

−∞
e−iωx e−η|x |dx

∫ ∞

0
e−iχlδ(l − |x |) dl

= η

2

∫ ∞

−∞
e−(η+iχ)|x |e−iωx dx

= η

2

∫ ∞

0
e−ηx e−i(ω+χ)x dx + η

2

∫ 0

−∞
eηx e−i(ω−χ)x dx

= η
η + iχ

(η + iχ )2 + ω2
. (5)

We now raise (5) to the m + 1 power and then compute the inverse transform.
Since the solution is symmetric around the origin, to simplify the notation we can
restrict our attention to the interval x > 0. Substituting (5) into (4) and writing the
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inverse transform we obtain,

fm X,L (x, l) = 1

(2π )2
ηm+1

∫ ∞

−∞
eiωx dω

∫ ∞

−∞
eiχl (η + iχ )m+1

[(η + iχ )2 + ω2]m+1
dχ. (6)

Let us write the integral in ω as follows,
∫ ∞

−∞

eiωx

[(η + iχ )2 + ω2]m+1
dω = 2

∫ ∞

0

cos ωx

[(η + iχ )2 + ω2]m+1
dω

= 2
√

π
xm+ 1

2

2m+ 1
2

1

(η + iχ )m+ 1
2

Km+ 1
2
[(η + iχ )x]

�(m + 1)
, (7)

where the last equality follows from identity 8.432.5 of Ref. 2, and Km(·) is the
modified Bessel function of the first kind. Let us now proceed to compute the
remaining integral. We use the following polynomial expansion of the function
Km(·), see identity 8.468 of Ref. 2,

Km+ 1
2
[(η + iχ )x] =

√
π

2

1

(η + iχ )x
e−(η+iχ)x

m∑

k=0

(m + k)!

2kk!(m − k)!

1

[(η + iχ )x]k

(8)
which substituted into (7) and then substituting into (6) leads to

fm X,L (x, l) = 1

(2π )2
ηm+1 π

m!2m
e−ηx

m∑

k=0

(m + k)!

k!(m − k)!

xm−k

2k

∫ ∞

−∞

ei(l−x)χ

(η + iχ )k
dχ.

(9)
For k = 0 the integral in (9) reduces to

∫ ∞

−∞
ei(l−x)χ dχ = 2πδ(l − x). (10)

For k > 0 and letting p = iχ , the integral in (9) can be computed as a known
inverse Laplace transform of a function differentiated with respect to η,

∫ ∞

−∞

ei(l−x)χ

(η + iχ )k
dχ = (−1)k−1

(k − 1)!

∂k−1

∂ηk−1

∫ ∞

−∞

ei(l−x)χ

(η + iχ )
dχ

= (−1)k−1

(k − 1)!

∂k−1

∂ηk−1

1

i

∫ i∞

−i∞

ep(l−x)

(η + p)
dp

= 2π

(k − 1)!
(l − x)k−1e−η(l−x) , (l > x). (11)

Substituting (10) and (11) into (9) we obtain,

fm X,L (x, l) = ηm+1

(2π )2

π

m!2m
e−ηx

(
f (1)(x, l) + f (2)(x, l)

)
(12)



When a Random Walk of Fixed Length can Lead Uniformly Anywhere Inside 817

where

f (1)(x, l) = 2πe−η(l−x)
m∑

k=1

(m + k)!

k!(m − k)!

xm−k

(k − 1)!

(l − x)k−1

2k
, (l > x)

f (2)(x, l) = 2πδ(l − x)xm . (13)

It is easy to check that for m = 0 (12–13) reduce to (2), the exponential pdf of
a single step of length l. Finally, we can compute the conditional density after n
steps. First, we notice that the pdf of the total path length travelled in n steps,
obtained by m-fold convolution of

fL (l) = ηe−ηl , (l > 0), (14)

is simply the Gamma density

fmL (l) = ηm+1

m!
lme−ηl , (l > 0), (15)

which together with (12) leads to,

fm X |L (x, l) = fm X,L (x, l)

fmL (l)

= 1

(2π )2

π

(2l)m
e−η(x−l)

(
f (1)(x, l) + f (2)(x, l)

)
. (16)

Above result holds for x > 0 and is symmetric for x < 0, so it is now easy to
check that for m = 1 the conditional density of the two-step random walk is the
linear combination of a uniform density and two Dirac’s delta functions placed at
the boundary of the interval [−l, l], as anticipated in the introduction. Obtained
formulas are valid for any number of steps, but do not give insight on what happens
in higher dimensions.

3. TWO DIMENSIONS

It is possible to obtain a closed form solution in two dimensions using the same
analytic approach outlined above. Again, formulas hold for any number of steps.
In the special case of three steps, they reveal that, conditioned on the sum of their
absolute values, the vectorial sum of three random vectors of exponential length
and uniform direction has a uniform density. This means that being constrained
by a path of fixed length l, by taking three random steps on the plane the walker
can end uniformly anywhere inside the ball of radius l.

Consider first the total path length travelled on the plane (i.e. the sum of
the Euclidean lengths of the single steps of the walk). As in the one dimensional
case, this is given by m = n − 1 convolutions of the one dimensional, positive,
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exponential density. Hence, we rewrite the Gamma density

fmL (l) = ηm+1

m!
lme−ηl , (l > 0). (17)

We now consider the first step of the random walk on the plane. Starting from
the origin, the walker chooses a random direction uniformly in [0, 2π ] and takes a
step of exponential length. Accordingly, the pdf of the random coordinate R ∈ R

2

reached in the first step is given by

fR(r) = η

2πr
e−ηr . (18)

Note that above density depends only on the absolute value r = |r| and that it
integrates to one over the whole plane. Consider now the joint pdf of reaching
coordinate R on the plane in a single step of length L ∈ R

+. This is immediately
given by

fR,L (r, l) = η

2πr
e−ηrδ(l − r ). (19)

Proceeding as in the one dimensional case, we now compute the joint pdf after n
steps by performing m = n − 1 convolutions of (19), and then by exploiting (17)
we obtain the conditional pdf

fm R|L (r, l) = fm R,L (r, l)

fmL (l)
. (20)

We start by computing the Fourier transform of (19). In cartesian coordinates
this is written as

�R,L (u, v, χ ) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

0
dl

η

2π
√

x2 + y2
e−η

√
x2+y2

× δ (l −
√

x2 − y2)e−i(ux+vy)e−iχl . (21)

By letting x = r cos θ , y = r sin θ , u = ω cos ψ , v = ω sin ψ , we have

�R,L (ω,ψ, χ ) =
∫ 2π

0
dθ

∫ ∞

0
rdr

∫ ∞

0
dl

η

2πr
e−ηrδ(l − r )e−iωr cos(θ−ψ)e−iχl .

(22)
The θ integration is performed by expanding the complex exponential in Bessel

functions Jk(·) using identity 8.511.4 of Ref. 2, obtaining

�R,L (ω,ψ, χ ) = η

2π

∫ ∞

0
e−ηr dr

∫ ∞

0
e−iχlδ(l − r ) dl

×
∫ 2π

0

∞∑

k=−∞
(−i)k Jk(ωr )e−ik(θ−ψ)dθ
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= η

∫ ∞

0
J0(ωr )e−ηr dr

∫ ∞

0
e−iχlδ(l − r ) dl

= η

∫ ∞

0
J0(ωr )e−(η+iχ)r dr

= η
√

(η + iχ )2 + ω2
, (23)

where the last equality follows from identity 6.611.1 of Ref. 2. Note that (23)
depends only on ω and χ and not on ψ , as expected, as the transformed pdf
depends only on r and l and not on θ .

We now perform the convolutions in the spectral domain and compute the
inverse Fourier transform. The integral in ψ of the inverse transform is obtained
following exactly the same procedure as in (23), which leads to

fm R,L (r, l) = ηm+1

(2π )2

∫ ∞

−∞
eiχldχ

∫ ∞

0

ωJ0(ωr )

[ω2 + (η + iχ )2]
m+1

2

dω. (24)

We compute the integral in ω by exploiting identity 6.565.4 of Ref. 2, obtaining
∫ ∞

0

ωJ0(ωr )

[ω2 + (η + iχ )2]
m+1

2

dω = r
m−1

2

2
m−1

2 �
(

m+1
2

)
K− m−1

2
[(η + iχ )r ]

(η + iχ )
m−1

2

. (25)

For m > 0, renaming iχ + η = p, and taking into account that K−m(·) = Km(·),
we can identify the last integral in χ with the Laplace transform 2.13.21 of Ref. 3
that yields

1

2π

∫ ∞

−∞

K− m−1
2

[(iχ + η)r ]

(iχ + η)
m−1

2

eiχldχ = e−ηl 1

2π i

∫ +i∞

−i∞

K m−1
2

(pr )

p
m−1

2

epldp

= e−ηl

√
π (l2 − r2)

m−2
2

2
m−1

2 r
m−1

2 �
(

m
2

) , (l > r ). (26)

Combining Eqs. (19) and (24)–(26), we finally get
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f0R,L (r, l) = η

2πr
e−ηrδ(l − r )

fm R,L (r, l) = η

2π
e−ηl 2

√
πηm

2m�( m+1
2 )�( m

2 )
(l2 − r2)

m−2
2 , (l > r ), m = 1, 2, . . .

(27)
Equation (27) is a closed form expression for the joint pdf of reaching position

r in n = m + 1 steps, and with total path length l. The conditional probability is
readily obtained by substituting (17) and (27) into (20) and exploiting the doubling
formula of the Gamma function, see formula 8.335.1 of Ref. 2. After some algebra,
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Fig. 1. We sketch the probability density function of the position of the walker after n steps, conditioned
on the total path length. Note that taking three steps of the walk on the plane, marks a critical transition
point between the probability mass being concentrated on the boundaries and being concentrated at
the origin of the walk. At this transition point the random walk can lead uniformly anywhere inside
the disc of radius l.

one obtains the simple expression
⎧
⎪⎪⎨

⎪⎪⎩

f0R|L (r, l) = 1

2πl
δ(l − r )

fm R|L (r, l) = m

2πl2

(

1 − r2

l2

) m−2
2

, (l > r ), m = 1, 2, . . .

(28)

It is now interesting to look at some special cases that are also sketched in Fig. 1.

• For m = 0 (one step),

f0R|L (r, l) = 1

2πl
δ(l − r ),

the whole probability mass is concentrated on the circle of radius l. Clearly,
in one step a random walk constrained by a total path length l can only end
at a position uniformly distributed on this circle.

• For m = 1 (two steps),

f1R|L (r, l) =
(

1 − r2

l2

)− 1
2 1

2πl2
,

the mass is still mostly concentrated around the circle of radius l. However,
taking two steps allows some flexibility on where to end the walk and there
is some non-zero mass distributed inside the disc of radius l.

• For m = 2 (three steps),

f 2R|L (r, l) = 1

πl2
,
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the mass is now uniformly distributed over the disc of radius l. Hence,
taking three steps of the walk marks a critical transition point where the
random walk can end uniformly anywhere inside the disc.

• For m → ∞

f∞R|L (r, l) = δ(r )

2πr
,

the mass tends to be concentrated at the origin. Clearly, by taking a large
number of steps and fixing the total path length, uniformly oriented steps
on average must become smaller and this tends to entangle the walk around
the origin point.

4. THREE AND HIGHER DIMENSIONS

Computations become intractable in higher dimensions. Hence, rather than
seeking for a complete solution, we turn to the question of whether the uniform
density arises at all for a given number of steps in dimension d. A simple second
moment argument shows that a necessary condition for this is that 2(d + 2)/d is
an integer and equal to n + 1, which clearly rules out the three dimensional case.
The computation is briefly outlined next.

We let the total path length be L = ∑n
i=1 Li , where Li ’s are one dimensional

i.i.d. exponential random variables of density fLi (l) = ηe−ηl , (l > 0). The second
moment of L is given by,

E(L2) =
n∑

i=1

E
(
L2

i

) + E

⎛

⎝
∑

i �= j

Li L j

⎞

⎠

= 2n

η2
+ n(n − 1)

η2
,

= n(n + 1)

η2
, (29)

where we have used the independence of the Li ’s and that their mean is 1/η and
their variance is 1/η2. We also write the second moment of the final position R of
the random walk via the conditional expectation,

E(|R|2) = E(E(|R|2|L)). (30)

Recall now that for a random vector Z uniformly distributed in a hypersphere of
radius s in d dimensions it must be,

E(|Z |2) = d

d + 2
s2. (31)
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It follows from (30) and (31) that if R conditioned to the total path length L is
uniformly distributed it must be,

E(|R|2) = E(E(|R|2|L)) = d

d + 2
E(L2). (32)

Hence, substituting (29) into (32) we have that a necessary condition for the
uniform density to arise is,

E(|R|2) = d

d + 2

n(n + 1)

η2
. (33)

On the other hand, we can write R in terms of its d-dimensional components,

R =
( n∑

i=1

Ri1,

n∑

i=1

Ri2, . . . ,

n∑

i=1

Rid

)

, (34)

and using the fact that each d-dimensional component has zero mean, the second
moment can be easily computed as follows

E(|R|2) =
d∑

j=1

n∑

i=1

E
(
R2

i j

) +
∑

i1 �=i2

E(Ri1 j )E(Ri2 j )

=
n∑

i=1

d∑

j=1

E
(
R2

i j

) =
n∑

i=1

E
(
L2

i

) = 2n

η2
, (35)

Combining (33) and (35) we have following necessary condition for the conditional
density after n steps to be uniform,

n = 2(d + 2)

d
− 1. (36)

We conclude that in three and all dimensions for which 2(d + 2)/d is not an
integer and equal to n + 1, the random walk does not lead to a uniform density.
Furthermore, we notice that the necessary condition is clearly not sufficient for
d = 1.

5. CONCLUSION

We have considered a variant of the Pearson-Rayleigh random walk where
the lengths of the steps are i.i.d. exponentially distributed random variables. We
have considered the pdf of the position of the walker after n steps, conditioned
on the total length l of the path and obtained closed form solutions in one and
two dimensions. We have noticed that in two dimensions by taking three steps
of the walk, one can end uniformly anywhere inside a ball of radius l. Since it
is trivial to show that a similar situation arises by taking only two steps in one
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dimension, one might naturally suspect to obtain a uniform density after four
steps in three dimensions. On the contrary, we have shown that this is not the case,
and that in d−dimensions a necessary condition to obtain a uniform density is
2(d + 1)/d = n + 1.

We mention that after being surprised to find the uniform density arising
after three steps on the plane, we have tried to come up with a simple geometric
argument for this case, but did not succeed. It is likely that a geometric proof
alternative to the analytic calculation may give additional insight on the behavior
of the walk in higher dimensions, and remains an open problem. Furthermore,
it would be interesting to see if performing higher moment computations it is
possible to obtain a sufficient condition for uniformity in dimension d.
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